Canonical approach to phonaesthemes in Korean ideophones

Nahyun Kwon
JSPS/Nagoya University

Phonaesthemes are recurrent pairings of sound and meaning (e.g., gl- ‘vision, light’ in glisten, glitter, gleam, glow and sn- ‘nose, mouth’ in snore, sneeze, snarl, sniff, snort) and often, they can be integrated into sound-symbolic systems (Bergen, 2004). To exemplify, it is not uncommon that ideophonic stems can be structurally analyzed as containing phonaesthemes, particularly phonaesthemes arranged into paradigms (Blust, 1988, pp. 37-45; Dingemanse, 2011, pp. 173-174; Tufvesson, 2011). Examples of phonaesthetic units within ideophones in Korean, the meaning-bearing elements of ideophones (MEI’s), include the paradigms in (1) (based on consonant strength), and in (2) (based on vowel quality) below.

1. pɛŋpɛn/pʰɛŋpɛn ‘a neutral/stronger and more violent motion of circling’
2. pɨŋkil/pɛŋkil ‘twirling of a bigger/small object’

Given the fact that certain phonological structures are associated with certain meanings, phonaesthemes undeniably resemble regular morphemes. Despite this, however, they have traditionally been treated as special phenomena in morphology mainly due to the non-compositionality of the stems in which they appear (Abramova et al., 2013; Bergen, 2004; Schmidtke et al., 2014) and to their semantic vagueness (Bolinger, 1950; Healy, 2011). In line with this, Kwon and Round (2015) found that typical English phonaesthemes (i.e., non-paradigmatic type such as gl- and sn-) are clearly differentiated from other stem-building morphology with their canonical accompaniment by meaningless residues, within the framework of Canonical Typology (Corbett 2003, 2005, 2006, 2007, 2015). This finding naturally leads to a question as to whether the defined status of a phonaesthetic phenomenon within morphological theory holds cross-linguistically. To seek answers, I also apply the method of Canonical Typology, which provides explicit mechanisms for inherently characterizing variability of a given linguistic phenomenon along multi-dimensions, and compare Korean MEI’s and English phonaesthemes against Kwon and Round’s seven criteria for the canonicity of phonaesthemes. In Kwon and Round’s study, they focused on the canonical analysis of non-paradigmatic English phonaesthemes in relation to derivational morphology. However, assuming that the canonicity of English phonaesthemes may be different depending on whether one attends to a paradigmatic (e.g., the vowels i, o in drip-drop; ding-dong; plink-plonk) or non-paradigmatic phonaesthemes, I measure their canonicity values separately against the canonical criteria for phonaesthemes in this paper. Consequently, I conduct the comparisons of the canonical analyses of English phonaesthemes, of both paradigmatic and non-paradigmatic types, and Korean MEI’s, and integrate them with the previous canonical analysis of other stem-building morphology. Counting the number of clear differentiators of phonaesthemes (paradigmatic and non-paradigmatic types) versus non-phonaesthetic stem-building elements (nPSE’s), and of MEI’s versus nPSE’s, phonaesthemes and MEI’s are ranked in order of their closeness to nPSE’s, as in (3) (a > b “a is closer to nPSE’s than b”).

3. nPSE’s > non-paradigmatic phonaesthemes > MEI’s > paradigmatic phonaesthemes

The result suggests that non-paradigmatic phonaesthemes sit in a space closest to nPSE’s, followed by MEI’s and paradigmatic English phonaesthemes, and therefore phonaesthemes
in Korean ideophones are accorded a different place from English phonaesthemes of both paradigmatic and non-paradigmatic types within morphological theory.

References